Modeling Rights in OWL

Wesley Hohfeld’s (1879–1918) discovery of an interrelated set of ‘incidents’ has had a profound effect on law and the analysis of rights, and is widely accepted (albeit with dispute around the edges). The Hohfeldian Analytical System is a formal system that can be used to analyze and relate different kinds of rights, their content, their agents, and actions to one another. The ‘incidents’ include:

  • powers
  • privileges
  • claims
  • immunities
Wesley Hohfeld (1879–1918)

Recently, I have been working with Mathias Brochhausen to implement them in an ontology in OWL that can be leveraged for knowledge representation of rights and obligations in domains like law, insurance claims, medicine…

Describing the incidents and relating them is easy for most of the rules in the system. For instance, relations like ‘Every power is a secondary rule and an active right’ are easy to treat with rdfs:subClassOf relations.

Other axioms are more difficult. Take for instance:

  • A has a claim that B φ if and only if B has a duty to A to φ.

There are any number of ways one might begin formulating this rule in a logical system. In OWL, however, one is limited by a) the (arguable) use of a three place predicate (i.e. X has claim/duty on Y to perform action Z) and b) a prohibition against repeating the appearance of a variable in a class axiom (for the same reason, one cannot axiomatize the class of all barbers who shave themselves). This leaves the task of enforcing some of these axioms outside of OWL in languages like SWRL, SHACL, and SPIN.

A developing draft of this work is now available on GitHub: https://github.com/neilotte/moralpsych

New Industrial Ontology Foundry (IOF) website

The IOF has a new website available here. Melinda Hodkiewicz and her group at The University of Western Australia are owed thanks for taking it on, and organizing an IOF conference taking place shortly in Oslo as well.

Working groups for the IOF have been busy lately, despite the government shut-down. Recent presentations concerning foundational ontologies have come from Michael Grunniger on PSL, Nicola Guarino on DOLCE, and Barry Smith on BFO.

New: Intelligence Ontology Laboratory (IOLab)

There is now a new inter-organizational laboratory designed to facilitate and showcase work in ontology for the intelligence community: IOLAB. Stay tuned for developments. Graduate students and ph.d. candidates who are interested in pursuing careers in ontology are encouraged to read some of the materials there, follow links, and inquire about future opportunities. Here is a video of Barry Smith discussing one prominent, related effort in this domain: the Joint Doctrine Ontology (JDO).

The Qualities of Products vs. Product Quality

In a presentation to the Industrial Ontology Foundry last spring, I presented a short argument against representing quality (in the evaluative sense) using classes. The argument stands on the distinction between non-evaluative qualities as intrinsics and and evaluative qualities as extrinsics. For instance, a Tesla Model 3 has a mass, a shape, a size, and a color intrinsically, but it is a well-made or poorly made car extrinsically, or, in virtue of standing in a certain relationship to a specification or quality standard. 

I was asked to write up my slides in a short white paper for circulation. The resulting document is here. I would be interested in any criticisms of the argument or representation from those working with evaluations in product ontologies, particularly those working in OWL. Most of the relations can be found either in BFO or in the Common Core Ontologies. I have turned comments off of these posts to end an onslaught of spam, but serious responders can drop me a line at my email address.

 

 

The Informed Consent Ontology (ICO)

There are many representations of informed consent in EHR systems. Such representations aid in clarifying which protocols are relevant to a research study, and what may be done with a particular biological sample taken from a patient. In this way, they aid in ensuring research can move forward while protecting patient rights.

I am presently aiding in a revision of the OBO Foundry Informed Consent Ontology (ICO), whose goal is to unite a series of ontological representations in order to track consent across the life cycle, from the moment consent is provided, through the transfer of that consent power to various other institutions, where it may be used to permit a particular research study.

The original version of the file developed by Oliver He and colleagues is available here and a development fork of its github repo containing this ontology is presently under development here. The development team and I are grateful to Oliver and his colleagues at the University of Michigan for the opportunity to work with them, and we look forward to presenting at ICBO2018. Comments and criticisms welcome. See our poster here.

 

Capabilities in Basic Formal Ontology

Capabilities feature in healthcare, where they are frequently used in the assessment of health and well-being, but they also feature in industry and manufacturing. At the request of some industry partners, Barry Smith has put together a group of ontologists who are interested in putting together an account of capabilities compatible with Basic Formal Ontology.

Presently, there is a small working group consisting of academic and industry partners and we are now working here at the National Center for Ontological Research GitHub site.  There is now a wiki set up that explains the basic account on the table, and a list of objections to it. The hope is to work both on clarifying objections and revising the account to respond to them.

Teaching Protégé with a Murder Mystery

I recently presented a tutorial on Protégé–a widely-used ontology editor developed at Stanford University. Some of the students (all in Biomedical Informatics) were already pros, while others were new to implementing ontologies in OWL and Turtle. Many of them have training in Basic Formal Ontology and were eager to apply it, so I put together the assignment below, with a scenario based on one I commonly used to teach Mill’s methods in Critical Thinking courses (for complete step-by-step instructions and an OWL file that presents a key, drop me an e-mail). I may tweak it in the future, but I thought it went over well. Although the scenario is silly, the basic technique of using defined classes and a reasoner to identify instances through re-classification is a frequently used technique in scientific and research applications of ontology.

The Case of the Murdered Psychologist: A Protégé Murder Mystery

A psychologist has been murdered by one of her patients and your task is to find out whodunnit. Using her notes, you know facts about the suspects, as well as about the murderer.

We’ll use Protégé and one of its reasoners to discover the murderer in our data. Hopefully, along the way, you will learn how to import other ontologies; create classes, object properties, individuals, and various kinds of restrictions; and use Protégé as a knowledge base that can tell you something new about your data. (Note: usually, ontologies are built under the open world assumption, but for the purposes of the game, let’s pretend the available facts exhaustively describe the investigation.) We will use classes and relations from three other ontologies: The Relations Ontology, BFO 2.0, and the Mental Functioning Ontology.

Facts of the Case

  1. The suspects include: Werner, Mark, Neil, and Barry.
  2. Mark can play the violin.
  3. Neil, Mark, and Barry daydream.
  4. Barry cannot play a musical instrument, but he can read and solves math problems.
  5. Werner has never daydreamed.
  6. Mark admits he doesn’t do problem solving of any kind.
  7. Werner can play the trumpet and engages in mathematical problem solving.
  8. Sadly, Neil never learned to play an instrument and has no linguistic skills whatsoever.
  9. The murderer is A) a daydreamer and B) either a musician or literate and C) engages in problem solving.

Represent these facts in Protégé, reusing as many classes as possible from the Mental Functioning Ontology. Then, make ‘OURMURDERER’ a defined class, with an equivalence axiom described by line 9. With any luck, when you run the reasoner, the only possible suspect will be the only individual who instantiates the class ‘OURMURDERER’.

Good luck detective!

————————

Moral Psychology Ontology Repository

I have started a public Github repository available here, which will house a series of ontology files I have been working on, all related to social and moral psychology data. The first project now available is a rough update to a class project I worked on with Brian Donohue, which maps a large series of personality research instruments to the Five Factor Paradigm. It was created to allow for large amounts of psychology data taken from a variety of instruments to be repurposed as measurements for Five Factor. Parts of it will also be added to the Mental Functioning Ontology.

CHAMP – Coordinated Holistic Alignment of Manufacturing Processes

For the last year, while working on my dissertation, I have been serving as UB project manager for the CHAMP project–an industry project generously funded by the Digital Manufacturing and Design Innovation Institute (DMDII). The goal of the project is to create a suite of modular ontologies that represent the domain of manufacturing across the product life cycle. Implemented in turtle, such ontologies may later be combined à la carte, allowing small and mid-sized companies, their suppliers, and their customers to plan out their long term data integration needs. Such data integration is a billion dollar task and requires companies to continually hire specialists who design custom systems at cost (and which need updating). By contrast, at the end of our project, all files will be made available to the public, along with documentation. Companies can then download and extend them for free.

An overview of the domain of interest for CHAMP

Such practical, industry work may seem as far away from academic philosophy as one could get, but that isn’t true. While working on this project, my colleagues and I have had to tackle a host of philosophical issues, issues such as: how best to taxonomize artifacts, how to define the persistence conditions of portions of material (as opposed to mere objects or object aggregates), how to think of material functions and dispositions, how to treat design specifications and simulation models within a realist ontology framework (i.e. within Basic Formal Ontology), and the social ontology of organizations, deontic relations, and social roles.

There are a number of industry ontology projects going on right now and I am learning about others all the time. What makes ours unique, I believe, is that it is guided by the insights taken from the creation of the Open Biomedical Ontology Foundry. This ongoing project supports open, social, expertly curated ontologies in biomedical science, and has led to a series of principles and practices, honed by experience, that have been instructive for this project. Too many other ‘ontology’ projects really seem like exercises in semantic technology applications, since they are not interested in ontology per se, but rather in designing a one-off application that succeeds in one particular area. We are interested in creating models that can be re-used, and this requires a series of constraints others aren’t thinking about. Some of these constraints come from the new world of open data (e.g. collaborative design and open access), but others require drawing from expertise in other areas, for instance: analytic metaphysics, logic, mereotopology, social ontology. In this regard, having a good theory is the most practical advantage one can have.

 

 

 

 

National Center for Ontological Research (NCOR)

For the last few years, I have been working on various ontology projects with members for the NCOR community. These projects have varied widely, from social and medical ontologies, to military intelligence and industrial ontologies. My own dissertation work concerns ontologies for social science and moral psychology data. In the coming months, the group will be making some updates to our word press web site and our wiki. Suggestions for new work or features to include are welcome.

There is some exciting work coming down the pike that I look forward to sharing here. Stay tuned.